本文是个人在实际开发和学习中对nodejs的一些理解,现整理出来方便日后查阅,如果能给您启发将不胜荣幸。

非阻塞I/O

I/O:即 Input / Output,一个系统的输入和输出。

一个系统可以理解为一个个体,比如说一个人,你说话就是输出,你听就是输入。

阻塞 I/O 与非阻塞 I/O 的区别就在于系统接收输入再到输出期间,能不能接收其他输入

下面以两个例子来说明什么是阻塞 I/O 和非阻塞 I/O:

1、打饭

1.png

首先我们要确定一个系统的范围,在这个例子中食堂阿姨和餐厅的服务生看成是一个系统,输入就是点菜,输出就是端菜

那么在点菜和端菜之间能不能接受其他人的点菜,就可以判断是阻塞I/O还是非阻塞I/O。

对于食堂阿姨,他在点菜的时候,是不能帮其他同学点菜的,只有这个同学点完菜端菜走了之后,才能接受下一个同学的点菜,所以食堂阿姨是阻塞I/O。

对于餐厅服务员,他可以在点完菜以后,这个客人端菜之前是可以服务下一位客人的,所以服务员是非阻塞I/O。

2、做家务

2.png

在洗衣服的时候,是不需要等着洗衣机旁边的,这个时候可以去扫地和整理书桌,当整理完书桌后衣服也洗好了,这个时候去晾衣服,那么总共只需要25分钟。

洗衣服其实就是一个非阻塞I/O,在把衣服扔进洗衣机和洗完衣服期间,你是可以干其他事情的。

非阻塞I/O之所以能提升性能,是因为它可以把不必要的等待给节省掉。

理解非阻塞I/O的要点在于

  • 确定一个进行I/O的系统边界。这非常关键,如果把系统扩大,上面餐厅的例子,如果把系统扩大到整个餐厅,那么厨师肯定是一个阻塞 I/O。
  • 在 I/O 过程中,能不能进行其他 I/O。

nodejs的非阻塞 I/O

nodejs的非阻塞 I/O 是怎么体现的呢?前面说过理解非阻塞 I/O 的一个重要点是先确定一个系统边界,node的系统边界就是主线程

如果下面的架构图按照线程的维护划分,左边虚线部分是nodejs线程,右边虚线部分是c++线程。

3.png

现在 nodejs 线程需要去查询数据库,这是一个典型的 I/O 操作,它不会等待 I/O 的结果,而且继续处理其他的操作,它会把大量的计算能力分发到其他的c++线程去计算。

等到结果出来后返回给nodejs线程,在获得结果之前nodejs 线程还能进行其他的I/O操作,所以是非阻塞的。

nodejs 线程 相当于左边部分是服务员,c++ 线程是厨师。

所以,node的非阻塞I/O是通过调用c++的worker threads来完成的。

那当 c++ 线程获取结果后怎么通知 nodejs 线程呢?答案是事件驱动

事件驱动

阻塞:I/O时进程休眠,等待I/O完成后进行下一步;

非阻塞:I/O时函数立即返回,进程不等待I/O完成。

那怎么知道返回的结果,就需要用到事件驱动

所谓事件驱动可以理解为跟前端点击事件一样,我首先写一个点击事件,但是我不知道什么时候触发,只有触发的时候就去让主线程执行事件驱动函数。

这种模式也是一种观察者模式,就是我首先先监听这个事件,等触发时我就去执行。

那怎么实现事件驱动呢?答案是异步编程

异步编程

上面说过nodejs有大量的非阻塞I/O,那么非阻塞I/O的结果是需要通过回调函数来获取的,这种通过回调函数的方式,就是异步编程。比如下面的代码是通过回调函数获取结果的:

glob(__dirname+'/**/*', (err, res) => {
    result = res
    console.log('get result')
})

回调函数格式规范

nodejs的回调函数第一个参数是error,后面的参数才是结果。为什么要这么做呢?

try {
  interview(function () {
       console.log('smile')
  })
} catch(err) {
    console.log('cry', err)
}

function interview(callback) {
    setTimeout(() => {
        if(Math.random() < 0.1) {
            callback('success')
        } else {
            throw new Error('fail')
        }
    }, 500)
}

执行之后,没有被捕获,错误被扔到了全局,导致整个nodejs程序崩溃了。

4.png

没有被try catch捕获是因为setTimeout重新开启了事件循环,每开启一个事件循环就重新生一个调用栈context,try catch是属于上一个事件循环的调用栈的,setTimeout的回调函数执行的时候,调用栈都不一样了,在这个新的调用栈中是没有try catch,所以这个错误被扔到全局,无法捕获。具体可以参考这一篇文章异步队列进行try catch时的问题。

那么怎么办呢?把错误也作为一个参数:

function interview(callback) {
    setTimeout(() => {
        if(Math.random() < 0.5) {
            callback('success')
        } else {
            callback(new Error('fail'))
        }
    }, 500)
}

interview(function (res) {
    if (res instanceof Error) {
        console.log('cry')
        return
    } 
    console.log('smile')
})

但是这样就比较麻烦,在回调中还要判断,所以就产生一种约定成熟的规定,第一个参数是err,如果不存在表示执行成功。

function interview(callback) {
    setTimeout(() => {
        if(Math.random() < 0.5) {
            callback(null, 'success')
        } else {
            callback(new Error('fail'))
        }
    }, 500)
}

interview(function (res) {
    if (res) {
        return
    } 
    console.log('smile')
})

异步流程控制

nodejs的回调写法,不仅会带来回调地域,还会带来异步流程控制的问题。

异步流程控制主要是指当并发的时候,怎么来处理并发的逻辑。还是上面的例子,如果你同事面试两家公司,只有当成功面试两家的时候,才可以不面试第三家,那么怎么写这个逻辑呢?需要全局顶一个一个变量count:

var count = 0
interview((err) => {
    if (err) {
        return
    }
    count++
    if (count >= 2) {
        // 处理逻辑
    }
})

interview((err) => {
    if (err) {
        return
    }
    count++
    if (count >= 2) {
        // 处理逻辑
    }
})

像上面这种写法就非常麻烦,且难看。所以,后来就出现了promise,async/await的写法。

promise

当前事件循环得不到的结果,但未来的事件循环会给你结果。很像一个渣男说的话。

promise不仅是一个渣男,还是一个状态机:

  • pending
  • fulfilled/resolved
  • rejectd
const pro = new Promise((resolve, reject) => {
    setTimeout(() => {
        resolve('2')
    }, 200)
})
console.log(pro) // 打印:Promise { <pending> }

then & .catch

  • resolved 状态的 promise 会调用后面的第一个 then
  • rejected 状态的 promise 会调用后面的第一个 catch
  • 任何一个 reject 状态且后面没有 .catch 的 promise,都会造成浏览器或者 node 环境的全局错误。uncaught 表示未捕获的错误。

5.png

执行then或者catch会返回一个新的promise,该promise最终状态根据then和catch的回调函数的执行结果决定:

  • 如果回调函数始终是throw new Error,该promise是rejected状态
  • 如果回调函数始终是return,该promise是resolved状态
  • 但如果回调函数始终是return一个promise,该promise会和回调函数return的promise状态保持一致
function interview() {
    return new Promise((resolve, reject) => {
        setTimeout(() => {
            if (Math.random() > 0.5) {
                resolve('success')
            } else {
                reject(new Error('fail'))
            }
        })
    })
}

var promise = interview()
var promise1 = promise.then(() => {
    return new Promise((resolve, reject) => {
        setTimeout(() => {
            resolve('accept')
        }, 400)
    })
})

promise1的状态是由return里面的promise的状态决定的,也就是return里面的promise执行完后的状态就是promise1的状态。这样有什么好处呢?这样可以解决回调地狱的问题

var promise = interview()
    .then(() => {
        return interview()
    })
    .then(() => {
        return interview()
    })
    .then(() => {
        return interview()
    })
    .catch(e => {
        console.log(e)
    })

then如果返回的promise的状态是rejected,那么会调用后面第一个catch,后面的then就不会在调用了。记住:rejected调用后面的第一个catch,resolved调用后面的第一个then。

promise解决异步流程控制

如果promise仅仅是为了解决地狱回调,太小看promise了,promise最主要的作用是解决异步流程控制问题。下面如果要同时面试两家公司:

function interview() {
    return new Promise((resolve, reject) => {
        setTimeout(() => {
            if (Math.random() > 0.5) {
                resolve('success')
            } else {
                reject(new Error('fail'))
            }
        })
    })
}

promise
    .all([interview(), interview()])
    .then(() => {
        console.log('smile')
    })
    // 如果有一家公司rejected,就catch
    .catch(() => {
        console.log('cry')
    })

async/await

sync/await到底是什么:

console.log(async function() {
    return 4
})

console.log(function() {
    return new Promise((resolve, reject) => {
        resolve(4)
    })
})

打印的结果一样,也就是async/await是promse的语法糖而已。

我们知道try catch捕获错误是依赖调用栈的,只能捕获到调用栈以上的错误。但是如果使用await后能捕捉到调用栈所有函数的错误。即便这个错误是在另一个事件循环的调用栈抛出的,比如setTimeout。

改造面试代码,可以看到代码精简了很多。

try {
    await interview(1)
    await interview(2)
    await interview(2)
} catch(e => {
    console.log(e)
})

如果是并行任务呢?

await Promise.all([interview(1), interview(2)])

事件循环

因为nodejs的非阻塞 I/0, 所以需要利用事件驱动的方式获取 I/O 的结果,实现事件驱动拿到结果必须使用异步编程,比如回调函数。那么如何来有序的执行这些回调函数来获取结果呢?那就需要使用事件循环。

事件循环是实现 nodejs 非阻塞 I/O 功能的关键基础,非阻塞I/O和事件循环都是属于 libuv 这个c++库提供的能力。

6.png

代码演示:

const eventloop = {
    queue: [],
    loop() {
        while(this.queue.length) {
            const callback = this.queue.shift()
            callback()
        }
        setTimeout(this.loop.bind(this), 50)
    },
    add(callback) {
        this.queue.push(callback)
    }
}

eventloop.loop()

setTimeout(() => {
    eventloop.add(() => {
        console.log('1')
    })
}, 500)

setTimeout(() => {
	eventloop.add(() => {
		console.log('2')
	})
}, 800)

setTimeout(this.loop.bind(this), 50)保证了50ms就会去看队列中是否有回调,如果有就去执行。这样就形成了一个事件循环。

当然实际的事件要复杂的多,队列也不止一个,比如有一个文件操作对列,一个时间对列。

const eventloop = {
    queue: [],
    fsQueue: [],
    timerQueue: [],
    loop() {
        while(this.queue.length) {
            const callback = this.queue.shift()
            callback()
        }
        this.fsQueue.forEach(callback => {
            if (done) {
                callback()
            }
        })
        setTimeout(this.loop.bind(this), 50)
    },
    add(callback) {
        this.queue.push(callback)
    }
}

总结

首先我们弄清楚了什么是非阻塞I/O,即遇到I/O立刻跳过执行后面的任务,不会等待I/O的结果。当I/O处理好了之后就会调用我们注册的事件处理函数,这就叫事件驱动。实现事件驱动就必须要用异步编程,异步编程是nodejs中最重要的环节,它从回调函数到promise,最后到async/await(使用同步的方法写异步逻辑)。

更多node相关知识,请访问:nodejs 教程!

以上就是总结分享了解nodejs的几个关键节点的详细内容,转载自php中文网

点赞(601) 打赏

评论列表 共有 0 条评论

暂无评论

微信小程序

微信扫一扫体验

立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部