最基础的形态学操作有四个,分别是腐蚀、膨胀、开计算和闭计算,`scipy.ndimage分别实现了二值数组和灰度数组的这四种运算
二值 | 灰度 | |
---|---|---|
binary_erosion | grey_erosion | 腐蚀 |
binary_dilation | grey_dilation | 膨胀 |
binary_closing | grey_closing | 闭(先膨胀后腐蚀) |
binary_opening | grey_opening | 开(先腐蚀后膨胀) |
二值形态学
所谓腐蚀,用数学符号表示为
其中Bij表示当B BB的原点在(i,j)处时,B中所有为1的值的集合。
这个式子的意思是,用结构B腐蚀A,当B的原点平移到图像A的像元(i,j)时,若B完全被二者的重叠区域所包围,则赋值为1,否则赋值为0。当B中某个元素为1时,如果A中对应位置也为1,则(i,j)处的值为1,这是更直观的例子。
膨胀则与之相反,可表示为
换言之,只要B和A的重叠区域不是空集,那么(i,j)点就置为1。
举个例子如下
import numpy as np import matplotlib.pyplot as plt import scipy.ndimage as sn x = np.zeros([20,20]) x[5:15, 5:15] = 1 x_ero = sn.binary_erosion(x) x_dil = sn.binary_dilation(x) fig = plt.figure() ax = fig.add_subplot(1,3,1) ax.imshow(x) plt.title("original") ax = fig.add_subplot(1,3,2) ax.imshow(x_ero) plt.title("erosion") ax = fig.add_subplot(1,3,3) ax.imshow(x_dil) plt.title("dilation") plt.show()
效果如下
开运算是先腐蚀后膨胀;闭运算是先膨胀后腐蚀,示例如下
x = np.zeros([20,20]) x[5:15, 5:15] = 1 x[10:12,10:12] = 0 x[2:4, 2:4] = 1 x_open = sn.binary_opening(x) x_close = sn.binary_closing(x) fig = plt.figure() ax = fig.add_subplot(1,3,1) ax.imshow(x) plt.title("original") ax = fig.add_subplot(1,3,2) ax.imshow(x_open) plt.title("opening") ax = fig.add_subplot(1,3,3) ax.imshow(x_close) plt.title("closing") plt.show()
效果如下,可见开运算会去除孤立的1,闭运算会去除孤立的0。
灰度形态学
灰度图像的腐蚀、膨胀以及开闭运算,是其二值形势下的一个扩展,采用了类似卷积的逻辑,下面直接从scipy
中调取楼梯图片,并依次做腐蚀、膨胀以及开闭操作。
from scipy.misc import ascent img = ascent() funcs = { "original": lambda x, tmp:x, "erosion" : sn.grey_erosion, "dilation" : sn.grey_dilation, "opening" : sn.grey_opening, "closing" : sn.grey_closing } fig = plt.figure() for i, key in enumerate(funcs): ax = fig.add_subplot(2,3,i+1) plt.imshow(funcs[key](img, (10,10)), cmap=plt.cm.gray) plt.title(key) plt.show()
参数列表
二值函数和灰度函数的参数并不相同,下面以closing运算为例,二值和灰度函数的所有参数,除了输入input之外,二者共有的参数有
structure 为数组类型,表示构造元素,可以理解为是卷积模板
output 与输入相同维度的数组,可以存下结果
orgin 过滤器设置,默认为0
二值形态学滤波的其他参数如下
binary_closing(input, iterations=1, mask=None, border_value=0, brute_force=False)
其中
iterations 执行次数
mask 掩模数组,为bool类型的数组,对应False的位置将不会改变
border_value 边缘处的值
brute_force 如果为False,则只有上次迭代中发生变化的值才会更新
grey_closing(input, size=None, footprint=None, mode='reflect', cval=0.0)
size 为滤波模板
mode 可选reflect,constant,nearest,mirror, wrap,边缘填充方式
cval 边缘填充值
以上就是Python基本形态学滤波怎么实现的详细内容,转载自php中文网
发表评论 取消回复