Python实现二叉树

Python二叉树怎么实现

Python实现二叉树可以使用面向对象编程的方式,通过定义二叉树节点类来实现。每个节点包含一个数据元素、左右子节点指针和一些操作方法,如插入节点、查找节点、删除节点等。

以下是一个简单的二叉树实现示例:

class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None

    def insert(self, data):
        if self.data:
            if data < self.data:
                if self.left is None:
                    self.left = Node(data)
                else:
                    self.left.insert(data)
            elif data > self.data:
                if self.right is None:
                    self.right = Node(data)
                else:
                    self.right.insert(data)
        else:
            self.data = data

    def find(self, data):
        if data < self.data:
            if self.left is None:
                return str(data) + " Not Found"
            return self.left.find(data)
        elif data > self.data:
            if self.right is None:
                return str(data) + " Not Found"
            return self.right.find(data)
        else:
            return str(self.data) + " is found"

    def inorder_traversal(self, root):
        res = []
        if root:
            res = self.inorder_traversal(root.left)
            res.append(root.data)
            res = res + self.inorder_traversal(root.right)
        return res
登录后复制

在上述代码中,Node类定义了一个节点,包含数据元素data,以及左右子节点指针left和right。insert方法用于向二叉树中插入节点,find方法用于查找二叉树中是否存在特定节点,inorder_traversal方法用于对二叉树进行中序遍历。

下面是如何使用这个Node类来创建一个二叉树:

root = Node(50)
root.insert(30)
root.insert(20)
root.insert(40)
root.insert(70)
root.insert(60)
root.insert(80)

# 查找节点

print(root.find(70)) # Output: 70 is found
print(root.find(90)) # Output: 90 Not Found

# 中序遍历
print(root.inorder_traversal(root)) # Output: [20, 30, 40, 50, 60, 70, 80]
登录后复制

在上述代码中,首先创建了一个根节点root,然后使用insert方法向树中插入节点,最后使用find方法查找节点并使用inorder_traversal方法对二叉树进行中序遍历。

除了插入、查找和遍历方法,二叉树还有其他的操作方法,如删除节点、判断是否为二叉搜索树、计算树的深度等。下面是一个稍微完整一些的二叉树示例代码:

class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None

    def insert(self, data):
        if self.data:
            if data < self.data:
                if self.left is None:
                    self.left = Node(data)
                else:
                    self.left.insert(data)
            elif data > self.data:
                if self.right is None:
                    self.right = Node(data)
                else:
                    self.right.insert(data)
        else:
            self.data = data

    def find(self, data):
        if data < self.data:
            if self.left is None:
                return None
            return self.left.find(data)
        elif data > self.data:
            if self.right is None:
                return None
            return self.right.find(data)
        else:
            return self

    def delete(self, data):
        if self is None:
            return self

        if data < self.data:
            self.left = self.left.delete(data)
        elif data > self.data:
            self.right = self.right.delete(data)
        else:
            if self.left is None:
                temp = self.right
                self = None
                return temp
            elif self.right is None:
                temp = self.left
                self = None
                return temp
            temp = self.right.minimum()
            self.data = temp.data
            self.right = self.right.delete(temp.data)
        return self

    def minimum(self):
        if self.left is None:
            return self
        return self.left.minimum()

    def is_bst(self):
        if self.left:
            if self.left.data > self.data or not self.left.is_bst():
                return False

        if self.right:
            if self.right.data < self.data or not self.right.is_bst():
                return False

        return True

    def height(self, node):
        if node is None:
            return 0

        left_height = self.height(node.left)
        right_height = self.height(node.right)

        return max(left_height, right_height) + 1

    def inorder_traversal(self, root):
        res = []
        if root:
            res = self.inorder_traversal(root.left)
            res.append(root.data)
            res = res + self.inorder_traversal(root.right)
        return res
登录后复制

在这个示例中,我们新增了delete方法来删除指定的节点;minimum方法来查找树中的最小节点;is_bst方法来判断当前树是否为二叉搜索树;height方法来计算树的深度。

我们可以用以下代码来测试新增的方法:

# 创建二叉树
root = Node(50)
root.insert(30)
root.insert(20)
root.insert(40)
root.insert(70)
root.insert(60)
root.insert(80)

# 删除节点
print("Deleting node 20:")
root.delete(20)
print(root.inorder_traversal(root))

# 判断是否为二叉搜索树
print("Is it a BST?:", root.is_bst())

# 计算树的深度
print("Tree height:", root.height(root))
登录后复制

这样我们就完成了一个比较完整的二叉树的实现,同时也演示了如何在Python中使用面向对象编程思想来实现一个数据结构。

最后附上完整的二叉树类实现代码:

class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None

    def insert(self, data):
        if self.data:
            if data < self.data:
                if self.left is None:
                    self.left = Node(data)
                else:
                    self.left.insert(data)
            elif data > self.data:
                if self.right is None:
                    self.right = Node(data)
                else:
                    self.right.insert(data)
        else:
            self.data = data

    def find(self, data):
        if data < self.data:
            if self.left is None:
                return None
            return self.left.find(data)
        elif data > self.data:
            if self.right is None:
                return None
            return self.right.find(data)
        else:
            return self

    def delete(self, data):
        if self is None:
            return self

        if data < self.data:
            self.left = self.left.delete(data)
        elif data > self.data:
            self.right = self.right.delete(data)
        else:
            if self.left is None:
                temp = self.right
                self = None
                return temp
            elif self.right is None:
                temp = self.left
                self = None
                return temp
            temp = self.right.minimum()
            self.data = temp.data
            self.right = self.right.delete(temp.data)
        return self

    def minimum(self):
        if self.left is None:
            return self
        return self.left.minimum()

    def is_bst(self):
        if self.left:
            if self.left.data > self.data or not self.left.is_bst():
                return False

        if self.right:
            if self.right.data < self.data or not self.right.is_bst():
                return False

        return True

    def height(self, node):
        if node is None:
            return 0

        left_height = self.height(node.left)
        right_height = self.height(node.right)

        return max(left_height, right_height) + 1

    def inorder_traversal(self, root):
        res = []
        if root:
            res = self.inorder_traversal(root.left)
            res.append(root.data)
            res = res + self.inorder_traversal(root.right)
        return res

if __name__ == '__main__':
    # 创建二叉树
    root = Node(50)
    root.insert(30)
    root.insert(20)
    root.insert(40)
    root.insert(70)
    root.insert(60)
    root.insert(80)

    # 删除节点
    print("Deleting node 20:")
    root.delete(20)
    print(root.inorder_traversal(root))

    # 判断是否为二叉搜索树
    print("Is it a BST?:", root.is_bst())

    # 计算树的深度
    print("Tree height:", root.height(root))
登录后复制

运行代码后,可以得到以下输出:

Deleting node 20:
[30, 40, 50, 60, 70, 80]
Is it a BST?: True
Tree height: 3

这个示例包含了插入、查找、删除、遍历、判断是否为二叉搜索树和计算树的深度等。

以上就是Python二叉树怎么实现的详细内容,转载自php中文网

点赞(753) 打赏

评论列表 共有 0 条评论

暂无评论

微信小程序

微信扫一扫体验

立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部