在日常的开发中,经常会碰到需要对用户的分值等进行排序,比如在游戏里面需要对战斗力进行排行,在组队活动中需要对各个队伍的贡献值进行排行,在微信中需要对各个好友的步数进行排行,此时一般会选择redis的有序集合对用户的分数进行存储,从而实现排行榜的需求,但是不同的场景排行榜的方式也略有不同,以下根据自己日常的开发进行了一下归纳总结。

需求:对组队活动中各个队伍的贡献值进行排行。

不考虑积分相同

Redis的Sorted Set是String类型的有序集合。集合成员是唯一的,这就意味着集合中不能出现重复的数据。

每个元素都会关联一个double类型的分数。redis正是通过分数来为集合中的成员进行从小到大的排序。

有序集合的成员是唯一的,但分数(score)却可以重复。

下面先不考虑积分相同的情况,实现排行榜:

// 准备数据,其中value为每个队伍的ID,score为队伍的贡献值
> zadd z1 5 a 6 b 1 c 2 d 10 e
(integer) 5

// 分页查询排行榜所有的队伍和贡献值,要使用zrevrange,而不是zrange,贡献值越大越排在前面
> zrevrange z1 0 2 withscores
1) "e"
2) "10"
3) "b"
4) "6"
5) "a"
6) "5"

// 增加某个队伍的贡献值
> zincrby z1 3 d
"5"
> zincrby z1 4 c
"5"

// 查询排行榜所有的队伍
> zrevrange z1 0 -1 withscores
 1) "e"
 2) "10"
 3) "b"
 4) "6"
 5) "d"
 6) "5"
 7) "c"
 8) "5"
 9) "a"
10) "5"

// 查询某个队伍的排名
> zrevrank z1 d
(integer) 2

Redis默认实现是相同分数的成员按字典顺序排序(09,AZ,a~z),上面使用的是zrevrange,所以是倒序,所以相同分数排序就不能根据时间优先来排序。

积分相同按时间排序,排名唯一

在上面的实现中,如果两个队伍的贡献值相同,也就是积分值相同,无法根据时间的先后进行排行。

所以需要设计一个分数 = 贡献值 + 时间戳 ,谁分数大谁排前面,最后还要能根据分数能解析出来贡献值。

设计1

使用整型存储分数值,redis中score本身是一个double类型,能精确存储的最大整型数字为2^53=9007199254740992(16位)。而精确到毫秒的时间戳需要13位,此时留给存储贡献值只有3位数了,当前如果时间只要精确到秒,只需要10位,这样留给贡献值就有6位。

整体设计:高3位表示贡献值,低13位表示时间戳。

如果我们简单地把score结构由:贡献值 * 10^13 + 时间戳 拼凑,因为分数越大越靠前,而时间戳越小则越靠前,这样两部分的判断规则是相反的,无法简单把两者合成一起成为score。

但是我们可以逆向思维,可以用同一个足够大的数Integer.MAX减去时间戳,时间戳越小,则得到的差值越大,这样我们就可以把score的结构改为:贡献值 * 10^13 + (Integer.MAX-时间戳),这样就能满足我们的需求了。

设计2

由于redis的score值是double类型,可以使用整数部分存储贡献值,小数部分存储时间戳,同样时间戳的部分使用一个最大值减去它。

这样,整体设计变为:分数=贡献值 + (Integer.MAX-时间戳) * 10^-13

弊端:由于分数值是由两个变量来计算得出,所以在给队伍增加贡献值时,无法简单的使用之前的zincrby来改变score的值了,这样在并发情况下为队伍增加贡献值就会导致score值不准确。

错误情况模拟:

假设现在队伍A的贡献值为10队伍A中的队员X为队伍增加贡献值1,在程序中算出score为11.xxx队伍A中的队员Y为队伍增加贡献值1,在程序中算出score为11.yyy队伍A中的队员X调用redis的zadd命令设置队伍的贡献值为11.xxx队伍A中的队员Y调用redis的zadd命令设置队伍的贡献值为11.yyy最后算出队伍A的贡献值为11,无法保证增加贡献值这一个操作的原子性。

此时需要借助lua脚本来保证计算和设置贡献值这两个操作的原子性:

// 其中KEYS[1]为排行榜key,KEYS[2]为队伍ID
// 其中ARGV[1]为增加的贡献值,ARGV[2]为Integer.MAX-时间戳
local score = redis.call('zscore', KEYS[1], KEYS[2]) 
if not(score) then
	score=0 
end 
score=math.floor(score) + tonumber(ARGV[1]) + tonumber(ARGV[2]) 
redis.call('zadd', KEYS[1], score, KEYS[2]) return 1

由于redis中无法使用时间函数,所以(Integer.MAX-时间戳) * 10^-13部分由脚本外程序计算好传入。

分页查询排行榜,查询队伍的排名等功能都可以继续使用上面的命令。

积分相同按时间排序,并列排名

所谓并列排行榜,就是存在相同排名情况的排行榜。

我们期望的结果如下表:

队伍ID贡献值排名
a1001
b992
c992
d884
e875

当然现实中也有排名不跳过的情况,我这里考虑的是排名跳过的情况。

redis中score的设计还是采用上面的分数=贡献值 + (Integer.MAX-时间戳) * 10^-13,只是在查询排名时需要进行计算。

比如要查上表中队伍b的排名,思路如下:

  • 首先查到队伍b的score
  • 再查到跟队伍b的score的整数部分相同(也就是贡献值一样),排在第一个的队伍的value(队伍ID)
  • 根据上一步得到的队伍ID查询此队伍的排名就是队伍b的排名

使用命令实现上面的步骤如下:

> zscore 排行榜key teamId
> zrevrangebyscore(排行榜key, 上一步得到的score+1, 上一步得到的score, limit, 0 , 1)
> zrevrank(排行榜key, 上一步得到的teamId)

为了性能考虑,可以使用下面的脚本一次查出来:

// KEYS[1]表示排行榜key
// KEYS[2]表示要查询的队伍的ID
local rank = 0 
local score = redis.call('zscore', KEYS[1], KEYS[2]) 
if not(score) then
    score=0 
else 
    score=math.floor(score) 
    local firstScore = redis.call('zrevrangebyscore', KEYS[1], score+1, score, 'limit', 0, 1) 
    rank=redis.call('zrevrank', KEYS[1], firstScore[1]) 
end 
return {score,rank}

下面附上分页查询排行榜的脚本,假如一页10条,不用下面的脚本需要查询10次上面的脚本,如果连上面的脚本都没有使用的话就要查询30次redis。

// 排行榜key
// ARGV[1]分页起始偏移
// ARGV[2]分页结束偏移
local list = redis.call('zrevrange', KEYS[1], ARGV[1], ARGV[2], 'withscores') 
local result={} 
local i = 1 
for k,v in pairs(list) do 
    if k%2 == 0 then 
        local teamId = list[k-1] 
        local score = math.floor(v) 
        local firstScore = redis.call('zrevrangebyscore', KEYS[1], score+1, score, 'limit', 0, 1) 
        local rank=redis.call('zrevrank', KEYS[1], firstScore[1]) 
        local l = {teamId=teamId, contributionValue=score, teamRank=rank+1} 
        result[i] = l i = i + 1 
    end 
end 
return cjson.encode(result)

此脚本使用了cjson库,返回的是一个json。

以上就是实例详解Redis实现排行榜及相同积分按时间排序功能的实现的详细内容,转载自php中文网

点赞(940) 打赏

评论列表 共有 0 条评论

暂无评论

微信小程序

微信扫一扫体验

立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部